

SPACE SCIENCE

Astrophysics

- infrared and submillimetre astronomy
- ultraviolet and optical astronomy
- X-ray and gamma-ray astronomy

Planetary and space science

- space plasma physics
- planetary science
- cometary science

Solar and heliospheric physics

EARTH OBSERVATION AND ENVIRONMENTAL SCIENCE

Earth resources

- advanced remote sensing
- instrumentation: passive microwave radiometry and sounding, synthetic aperture radars, scatterometers and altimeters, multispectral scanner
- data processing methodologies: processing of image data, processing of synthetic aperture radar data and scatterometers
- atmospheric processes and their influence on remote sensing measurements
- advanced technology (satellite): largescale memories, optical charge coupled

- and acoustic wave devices for image and side-looking radar data handling
- computer simulation of on-board processing systems

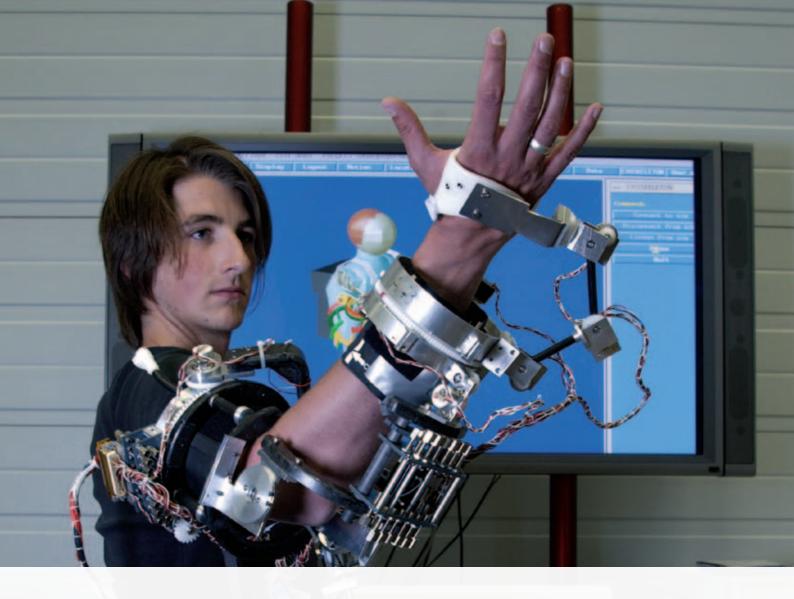
Geodesy, geophysics

- Earth kinematics studies
- refined studies on Earth potential
- geodynamics, earthquake prediction research
- position-determination and navigation systems
- physical oceanography
- ice dynamics
- studies of scientific and operational aspects of satellite observation laser systems for precise position determination and clock synchronisation
- satellite magnetometry

Meteorology, climatology, radiative budget of Earth

Software and systems

- picture processing (wind field extraction, sea-surface temperature), temperature profile inversion techniques (infrared and microwave)
- microwave radiometry and sounding applied to meteorology
- limb sounders, submillimetre heterodyne spectrometry, lidars


LIFE SCIENCES AND SCIENCE IN MICROGRAVITY CONDITIONS

Life sciences

- vestibular research, neurophysiology
- physiology, cardiopulmonary and musculoskeletal systems, regulatory processes
- cytology
- rhythms
- radiation biophysics
- developmental biology
- psycho-physiology
- biochemistry
- plant physiology
- microbiology
- bioengineering
- clinical medicine
- exobiology
- bioprocessing

Materials sciences

- fluid phenomena influencing the design of microgravity experiments
- experimental/mathematical modelling
- metallurgy, composites, glasses
- crystal growth
- chemistry
- techniques related to experimentation under microgravity

SPACE TECHNOLOGY

Spacecraft structures

- structure analysis methods (computeraided design, dynamics, design verification
- advanced composite structures
- smart structures
- erectable structures (large areas)
- fatigue and fracture mechanics

Spacecraft propulsion

- Chemical propulsion
- thermodynamic analyses of advanced engine cycles for storable and cryogenic bipropellant rocket engines
- · combustion instability studies
- rocket exhaust plume analyses; plume flow-field characteristics; plume impingement effects
- heat transfer analysis for rocket engines; regenerative cooling, film cooling
- use of advanced materials for rocket engines (composites)
- Electric propulsion
- mission analyses for orbital manoeuvres using electric propulsion; high-energy orbits, drag compensation for low orbits
- plasma physics and electro-optical analyses for field emission electric propulsion

Launcher propulsion

- Rocket propulsion
 - derivation and thermodynamic performance analysis of advanced rocket engine cycles for future launchers: influence of combustion pressure, variable mixture ratio, external expansion nozzles, advanced materials, dual fuel and tripropellant engines
- Air-breathing propulsion
- thermodynamic analysis of advanced engine cycles for hydrogen fuelled airbreathing engines, including combinedcycle engines, for use in future reusable launchers
- analysis of the installed propulsive performance of air-breathing engines in reusable launchers: force accounting and balance for thrust, drag, lift and weight
- derivation of installed engine performance, specific impulse and vehicle velocity losses as functions of altitude, Mach, incidence and bank angles

Mechanisms

- despun systems
- solar array drives
- space tribology
- deployment booms and large masts
- precision mechanisms for optical payload instruments

- advanced momentum/energy storage actuators
- precision-pointing mechanisms

Thermal control

- thermal analysis and modelling
- thermal software development

Thermal control technology

- heat transport (two-phase loops, heat pipes, fluid loops)
- heat rejection (passive, heat pipe, hybrid and advanced radiators)
- cryogenic cooling (cryostats, mechanical coolers and very-low-temperature cooling)
- thermal protection systems for reentry and planetary entry vehicles

Environment control and life support (ECLS)

- ECLS analysis and modelling
- life-support software development

Life-support technology (physico-chemical and biological)

- air management systems
- water management systems
- food management systems
- closed ecological life support systems (CELSS)

Habitability of manned vehicles and planetary bases

- architecture
- hygiene
- comfort
- psychological issues
- physiological issues

RF systems

- analogue and digital communication systems design and analysis, including space and ground segments
- communication techniques (coding, modulation, access, etc.)
- TT&C techniques
- Global navigation
- advanced remote sensing microwave instruments (radar radiometer, etc.), design and analysis
- microwave and digital technologies for satellite payloads (low-noise receivers, power amplification, frequency generation, filters, modems, etc.)
- equipment, subsystems, systems performance evaluation in RF system laboratories

Antennas, electromagnetism, propagation

- antenna design and simulation
- antenna calibration and measurement
- electromagnetic compatibility
- propagation, wave interactions

Attitude and orbit control

- dynamic simulation of large flexible spacecraft
- application of modern information/ control theory to advanced attitude measurement/control systems and to robotic control
- control organisation for flexible robot manipulators
- use of onboard processors for attitude control
- dynamics of liquids (stability, energy, dissipation)
- use of attitude detectors and gyros for spacecraft control
- studies of gravity gradient and solar sailing
- expert systems for control and diagnosis
- studies of rendezvous and docking of spacecraft in orbit

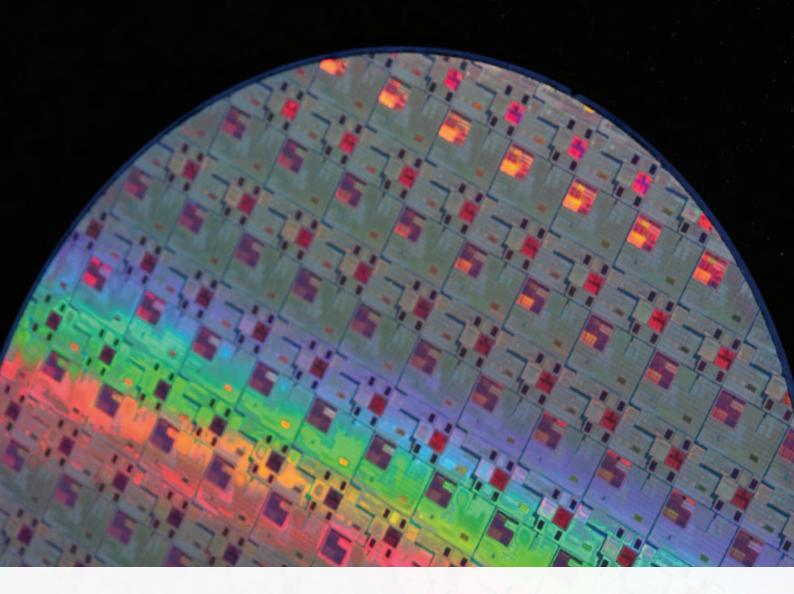
Robotics

- kinematics and dynamic analysis and simulation
- control systems and algorithms computation
- robot programming and calibration
- diagnostics, planning and recovery
- sensor and sensor-based control systemsjoints and electro-mechanical actuators
- wrists, end-effectors and grippers
- electronic and electromagnetic drives
- collision avoidance and intelligent control

- teleoperation and man/machine interfaces
- space payload servicing and automation
- space capture and berthing

Optics

- advanced optical detectors (solid state, single point, array, matrix)
- advanced optical instrumentation for Earth observation
- optical computers
- components for astronomical observations at various wavelengths
- advanced optical methods for pattern recognition, data transfer, etc.
- coherent, superheterodyne and homodyne detection


Energy conversion

Solar cells and arrays

Batteries

Electronics power conditioning and control

- space environment
- electromagnetic shielding at low frequencies
- prediction of electromagnetic interference on board spacecraft
- control of spacecraft vibration tests
- alternative test methods to space simulation

- modal survey tests versus systems tests, influence on cost, reliability and schedule
- spacecraft model philosophy, influence on reliability, cost and schedule

Product assurance

- cost-effectiveness
- availability and maintainability in space segment
- reliability of mechanical systems
- electronic, electrical and electromechanical components:
- · physics failure and reliability
- new failure and analysis techniques for complex integrated circuits
- effects of space radiation (e.g. particles, ions, X-rays) on advanced semi-conductor technologies
- · radiation hardening of MOS technologies
- biocompatibility of components in closed environmental systems
- · software product assurance
- databases
- expert systems for RAMS
- sneak circuit analysis

System engineering applications

- long-term mission studies to determine technology developments needs
- studies on definition and coherence of future space programmes

- spacecraft and launcher system engineering concepts, optimisation
- space systems utilisation and mission
 studies
- space operations, in-orbit servicing and support

Tools and tool applications

- CAD for system level applications, visualisation tools
- expert systems and artificial intelligence in system design
- large collections of data their handling and analysis including technical performance of systems and their costs, technology database

GROUND SEGMENT TECHNOLOGIES

Study, development and validation of groundbased technologies for support of mission operations in the following fields:

- ground data processing facilities for spacecraft monitoring and control, mission planning and management: expert systems, advanced man/machine interfaces, fault tolerance systems, object-oriented techniques, etc.
- · communication network concepts and

- protocols supporting different media and modes of operation in the space-to-ground link environment
- spacecraft attitude and orbit determination and control: modelling, numerical methods and techniques, manoeuvre optimisation
- ground station monitoring and control, data acquisition and transmission processing including associated coding techniques in different RF bands
- space debris assessment: debris observation techniques, modelling of space debris environment, debris risk analysis

APPLIED MATHEMATICS AND DATA PROCESSING

Applied mathematics

- mathematical analysis
- · numerical integration
- estimation of theory
- optimisation procedures
- dynamic analysis of non-rigid systems
- orbital calculations and mission analysis
- CFD: computational fluid dynamics
- simulation of physical systemssimulation and emulation of logical
- (computerised) systems with embedded software