Search

    WEBMAIL    |    Intranet    |    Site Map

 

 

ESA plans for low-orbiting navigation satellites

on 31 October 2022

ESA’s Navigation Directorate is planning an in-orbit demonstration with new navigation satellites that will orbit just a few hundred kilometres up in space, supplementing Europe’s 23 222-km-distant Galileo satellites.

Operating added-value signals, these novel so-called ‘LEO-PNT’ satellites will investigate a new multi-layer satnav system-of-systems approach to deliver seamless Positioning, Navigation and Timing services that are much more accurate, robust and available everywhere.

Global in coverage, free for everyone to use, Global Navigation Satellite Systems (GNSS) such as Europe's Galileo have already transformed our society, and due to their sheer omnipresence their influence continues to grow. In 2021, the population of satnav receivers reached 6.5 billion receivers around the world and the sector is projected to maintain a 10% annual growth rate in the years ahead.  But in various respects the standard GNSS approach is nearing the limits of optimum performance – to get even better, added ingredients are becoming essential.

Simply by virtue of physics, with less of a distance to cover down to Earth, the signals from these LEO PNT satellites can be more powerful, able to overcome interference and reach places where today’s satnav signals cannot reach.

And by adopting novel navigation techniques and a wider range of signal bands the satellites can address particular user needs: for instance at lower orbits the satellites themselves move more rapidly relative to Earth’s surface, which offers possible advantage in the time needed to reach very accurate positions. Also some bands could offer greater penetration in difficult environments while other bands could offer higher robustness and precision.

The purpose of ESA’s plan to perform an in-orbit demonstration of low Earth orbiting satnav satellites is precisely to consolidate the types of signals, enabling technologies and their potential for future services.

More details here.

Image credit: ESA-Science Office