WEBMAIL    |    Intranet    |    Site Map




on 13 December 2019

ESA Open Invitation to Tender AO9714
Open Date: 12/12/2019
Closing Date: 26/03/2020 13:00:00

Status: ISSUED
Reference Nr.: 19.1TT.03
Prog. Ref.: CC for Advanced Tech
Budget Ref.: E/0505-01C - CC for Advanced Tech
Tender Type: C
Price Range: > 500 KEURO
Products: Satellites & Probes / RF / Microwave Communication (Platform and Payloads) / "Communication - BB (Antennas excluded)" / Analog: Power amplifiers (SSPA, TWTA, ¿)
Technology Domains: RF Systems, Payloads and Technologies / RF Technologies and Equipment / RF Equipment
Establishment: ESTEC
Directorate: Directorate Telecom & Integrated Applica
Department: Telecom Technologies,Product&Systems Dep
Division: Technologies and Products Division
Contract Officer: Glandieres, Florence Odette Jeanne
Industrial Policy Measure: N/A - Not apply
Last Update Date: 12/12/2019
Update Reason: Closing Date Extended

The objective of the activity is to design, manufacture and test a breadboard of a 5W Q-band flexible output power amplifier moduleusing low loss spatial combining techniques. Furthermore, the use of the 5 W module to achieve higher power of up to 40 W - 80 W shall be demonstrated and evaluated as an alternative to vacuum tubes. Targeted Improvements:- Enabling European technology development and demonstration of 20% power added efficiency at 15 dBc NPR and 3 GHz bandwidth at 5W output power not existing today;- 40 - 80 W output power solid state amplifiers not available in Europe. Description:Utilisation of Q- and V-band frequencies (downlink and uplink respectively) is needed to satisfy the throughput and connectivity requirements of future satellite communication systems. A key element of such systems is the high power amplifier. Space qualified Q-band TWTAs of 40 W and above are available but are not compatible with the accommodation constraints and output power requirements of some applications. In Europe, Q-band semiconductor-based power amplifiers are currently limited to about 1 W CW.A Q-band Solid State Power Amplifier (SSPA) module providing 5W CW RF output power would satisfy this need. Furthermore, it would be an enabler for higher power amplifiers in the range of 40 - 80 W, through application of suitable spatial combining and thermal management techniques. High power Q-band SSPAs could replace TWTAs in high throughput geostationary satellites and, with frequency scaling of the technology to V-band, in ground stations. Q-band SSPAs with apower level of 45W are feasible and have already been demonstrated outside of Europe for ground segment and space applications. Recent advances of European semiconductor technologies (e.g. 0.1 um GaN technology and 70nm GaAs technology), packaging, housing and circuit topologies are enabling the efficiency and output power needed for European Q-Band SSPA products. In this activity,a breadboard of a 5 W Q-band amplifier module using European technology will be developed, manufactured and tested. This will include a suitable spatial combining and thermal management technique to reduce the power combining losses to a minimum. Scalability and a concept for a 40 - 80 W SSPA will be demonstrated by design and analysis. The technology building blocks (basic RF, MMIC, circuit design, combining techniques etc.) developed in this activity will be scalable to V-band so that the technology may also be exploited in ground segment applications.

If you wish to access the documents related to the Invitation to Tender, you have to log in to the ESA Portal.